Layer 2 Configuration Guide, Cisco IOS XE Gibraltar 16.11.x (Catalyst 9300 Switches)

您所在的位置:网站首页 ncclient cisco 9000 Layer 2 Configuration Guide, Cisco IOS XE Gibraltar 16.11.x (Catalyst 9300 Switches)

Layer 2 Configuration Guide, Cisco IOS XE Gibraltar 16.11.x (Catalyst 9300 Switches)

#Layer 2 Configuration Guide, Cisco IOS XE Gibraltar 16.11.x (Catalyst 9300 Switches)| 来源: 网络整理| 查看: 265

Multicast Group Scaling

The VXLAN implementation uses multicast tunnels for broadcast, unknown unicast, and multicast traffic forwarding. Ideally, one VXLAN segment mapping to one IP multicast group is the way to provide the optimal multicast forwarding. It is possible, however, to have multiple VXLAN segments share a single IP multicast group in the core network. VXLAN can support up to 16 million logical Layer 2 segments, using the 24-bit VNID field in the header. With one-to-one mapping between VXLAN segments and IP multicast groups, an increase in the number of VXLAN segments causes a parallel increase in the required multicast address space and the amount of forwarding states on the core network devices. At some point, multicast scalability in the transport network can become a concern. In this case, mapping multiple VXLAN segments to a single multicast group can help conserve multicast control plane resources on the core devices and achieve the desired VXLAN scalability. However, this mapping comes at the cost of suboptimal multicast forwarding. Packets forwarded to the multicast group for one tenant are now sent to the VTEPs of other tenants that are sharing the same multicast group. This causes inefficient utilization of multicast data plane resources. Therefore, this solution is a trade-off between control plane scalability and data plane efficiency.

Despite the suboptimal multicast replication and forwarding, having multiple-tenant VXLAN networks to share a multicast group does not bring any implications to the Layer 2 isolation between the tenant networks. After receiving an encapsulated packet fromthe multicast group, a VTEP checks and validates the VNID in the VXLAN header of the packet. The VTEP discards the packet if the VNID is unknown to it. Only when the VNID matches one of the VTEP’s local VXLAN VNIDs, does it forward the packet to that VXLAN segment.Other tenant networks will not receive the packet. Thus, the segregation between VXLAN segments is not compromised.



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3